Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25233
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChen, Yung-Weien_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-11-01T06:26:14Z-
dc.date.available2024-11-01T06:26:14Z-
dc.date.issued2023/11/15-
dc.identifier.issn0378-4754-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25233-
dc.description.abstractIn the paper, we determine the eigenvalues and eigenfunctions of the generalized Sturm- Liouville problems, whose potentials may be nonlinear functions of eigen-parameter, by developing new iterative algorithms based on the fictitious time integration method (FTIM) and half-interval method (HIM). We derive two eigen-parameter dependent linear shape functions, from which we can transform the generalized Sturm-Liouville problem to an initial value problem for a new variable, and automatically preserve the prescribed eigen-parameter dependent Sturm-Liouville boundary conditions. A nonlinear equation in terms of the relative norm of two consecutive right -end values of the new variable is derived for iteratively determining the eigenvalue by using the FTIM. The resultant sequence of the iterated eigenvalues are monotonically convergent to the desired eigenvalue, and meanwhile the unknown initial values of the eigenfunction can be determined for computing the eigenfunction by integrating the Sturm-Liouville equation. We propose a high precision point target method by using the HIM to determine the eigenvalue and eigenfunction of the generalized Sturm-Liouville problem, which is transformed to a definite initial value problem with a simpler Dirichlet or Neumann boundary condition on the right -end as a point target equation. Several new theoretical results are proved such that more simple generalized Sturm-Liouville problem can be derived with a single point target on the right -end. Depending on different transformation techniques and the derived target equations, seven types FTIM and four types HIM are developed. Numerical examples confirm that the present FTIM and HIM are effective and accurate.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofMATHEMATICS AND COMPUTERS IN SIMULATIONen_US
dc.subjectGeneralized Sturm-Liouville problemen_US
dc.subjectEigen-parameter dependent boundaryen_US
dc.subjectconditionsen_US
dc.subjectEigen-parameter dependent boundary shapeen_US
dc.subjectfunctionsen_US
dc.subjectFictitious time integration methoden_US
dc.subjectHalf-interval methoden_US
dc.titlePrecise eigenvalues in the solutions of generalized Sturm-Liouville problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.matcom.2023.11.008-
dc.identifier.isiWOS:001166809200001-
dc.relation.journalvolume217en_US
dc.relation.pages354-373en_US
dc.identifier.eissn1872-7166-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:海洋中心
輪機工程學系
顯示文件簡單紀錄

Page view(s)

91
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋