Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25237
DC FieldValueLanguage
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorLiao, Jia-Xianen_US
dc.contributor.authorHuang, Yi-Kaien_US
dc.date.accessioned2024-11-01T06:26:15Z-
dc.date.available2024-11-01T06:26:15Z-
dc.date.issued2024/1/1-
dc.identifier.issn0914-4935-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25237-
dc.description.abstractCurrent diagnostic methods for coronavirus disease 2019 (COVID-19) mainly rely on reverse transcription polymerase chain reaction (RT-PCR). However, RT-PCR is costly and timeconsuming. Therefore, an accurate, rapid, and inexpensive screening method must be developed for the diagnosis of COVID-19. In this study, we combined image processing technologies with deep learning algorithms to enhance the accuracy of COVID-19 identification from chest X-ray (CXR) sensor images. Contrast-limited adaptive histogram equalization (CLAHE) was used to improve the visibility level of unclear images. In addition, we examined whether our image fusion technique can effectively improve the performance of seven deep learning models (MobileNetV2, ResNet50, ResNet152V2, Inception-ResNet-v2, DenseNet121, DenseNet201, and Xception). The proposed feature fusion technique involves merging the features of an original image with those of an image subjected to CLAHE and then using the merged features to retrain, test, and validate deep learning models for identifying COVID-19 in CXR images. To avoid incidences of images not matching reality and to ensure high model stability, no data enhancement was conducted. The results of this study indicate that the proposed image fusion technique can improve the classification evaluation indicators, especially the sensitivity of deep learning models in two-class and three-class sortings. Sensitivity refers to a model's ability to detect an infection correctly. The highest accuracy in this study was achieved when combining Xception with the proposed feature fusion technique. In three-class sorting, the accuracy of this method was 99.74%, with the average accuracy of fivefold cross-validation being 99.19%. In two-class sorting, the accuracy of the aforementioned method was 99.74%, with the average accuracy of fivefold cross-validation being 99.50%. The results showed that the proposed image processing technologies with deep learning algorithms have exceptional generalization.en_US
dc.language.isoEnglishen_US
dc.publisherMYU, SCIENTIFIC PUBLISHING DIVISIONen_US
dc.relation.ispartofSENSORS AND MATERIALSen_US
dc.subjectCOVID-19en_US
dc.subjectconvolutional neural networken_US
dc.subjectdeep learningen_US
dc.subjectchest X-ray (CXR)en_US
dc.subjectcontrast-limited adaptive histogram equalization (CLAHE)en_US
dc.subjectfeature fusionen_US
dc.titleEvaluating Feature Fusion Techniques with Deep Learning Models for Coronavirus Disease 2019 Chest X-ray Sensor Image Identificationen_US
dc.typejournal articleen_US
dc.identifier.doi10.18494/SAM4685-
dc.identifier.isiWOS:001177719400001-
dc.relation.journalvolume36en_US
dc.relation.journalissue2en_US
dc.relation.pages683-699en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

73
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback