Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25237
DC 欄位值語言
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorLiao, Jia-Xianen_US
dc.contributor.authorHuang, Yi-Kaien_US
dc.date.accessioned2024-11-01T06:26:15Z-
dc.date.available2024-11-01T06:26:15Z-
dc.date.issued2024/1/1-
dc.identifier.issn0914-4935-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25237-
dc.description.abstractCurrent diagnostic methods for coronavirus disease 2019 (COVID-19) mainly rely on reverse transcription polymerase chain reaction (RT-PCR). However, RT-PCR is costly and timeconsuming. Therefore, an accurate, rapid, and inexpensive screening method must be developed for the diagnosis of COVID-19. In this study, we combined image processing technologies with deep learning algorithms to enhance the accuracy of COVID-19 identification from chest X-ray (CXR) sensor images. Contrast-limited adaptive histogram equalization (CLAHE) was used to improve the visibility level of unclear images. In addition, we examined whether our image fusion technique can effectively improve the performance of seven deep learning models (MobileNetV2, ResNet50, ResNet152V2, Inception-ResNet-v2, DenseNet121, DenseNet201, and Xception). The proposed feature fusion technique involves merging the features of an original image with those of an image subjected to CLAHE and then using the merged features to retrain, test, and validate deep learning models for identifying COVID-19 in CXR images. To avoid incidences of images not matching reality and to ensure high model stability, no data enhancement was conducted. The results of this study indicate that the proposed image fusion technique can improve the classification evaluation indicators, especially the sensitivity of deep learning models in two-class and three-class sortings. Sensitivity refers to a model's ability to detect an infection correctly. The highest accuracy in this study was achieved when combining Xception with the proposed feature fusion technique. In three-class sorting, the accuracy of this method was 99.74%, with the average accuracy of fivefold cross-validation being 99.19%. In two-class sorting, the accuracy of the aforementioned method was 99.74%, with the average accuracy of fivefold cross-validation being 99.50%. The results showed that the proposed image processing technologies with deep learning algorithms have exceptional generalization.en_US
dc.language.isoEnglishen_US
dc.publisherMYU, SCIENTIFIC PUBLISHING DIVISIONen_US
dc.relation.ispartofSENSORS AND MATERIALSen_US
dc.subjectCOVID-19en_US
dc.subjectconvolutional neural networken_US
dc.subjectdeep learningen_US
dc.subjectchest X-ray (CXR)en_US
dc.subjectcontrast-limited adaptive histogram equalization (CLAHE)en_US
dc.subjectfeature fusionen_US
dc.titleEvaluating Feature Fusion Techniques with Deep Learning Models for Coronavirus Disease 2019 Chest X-ray Sensor Image Identificationen_US
dc.typejournal articleen_US
dc.identifier.doi10.18494/SAM4685-
dc.identifier.isiWOS:001177719400001-
dc.relation.journalvolume36en_US
dc.relation.journalissue2en_US
dc.relation.pages683-699en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

73
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋