Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25257
DC 欄位值語言
dc.contributor.authorAdipraja, Philip F. E.en_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorYang, Hua-Shengen_US
dc.contributor.authorWang, Wei-Jenen_US
dc.contributor.authorLiang, Deronen_US
dc.date.accessioned2024-11-01T06:26:21Z-
dc.date.available2024-11-01T06:26:21Z-
dc.date.issued2024/3/26-
dc.identifier.issn2168-2216-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25257-
dc.description.abstractIn batch production systems, detecting low-yield machines is essential for minimizing the production of defective pieces, which is a complex problem that currently requires multiple experts, considerable capital, or a combination of both to overcome. To solve this problem, we proposed a cost-efficient and straightforward method that involves using maximum likelihood estimation and bootstrap confidence intervals to estimate per-machine yield; this method enables identification of low-yield machines and generation of a list of these machines. Manufacturing engineers can use the list to perform necessary verification and maintenance processes. Before implementing this method, a manufacturer with 50-500 machines should build a dataset containing approximately 6-20 times as many batches as there are production machines. When this condition is met, the proposed method can be used effectively to detect up to five low-yield machines.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMSen_US
dc.subjectProductionen_US
dc.subjectYield estimationen_US
dc.subjectMaintenance engineeringen_US
dc.subjectPrognostics and health managementen_US
dc.subjectBatch production systemsen_US
dc.subjectReliabilityen_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectBatch productionen_US
dc.subjectexpectation-maximization (EM) algorithmen_US
dc.subjectmachine maintenen_US
dc.titleDetecting Low-Yield Machines in Batch Production Systems Based on Observed Defective Piecesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TSMC.2024.3374393-
dc.identifier.isiWOS:001193869700001-
dc.identifier.eissn2168-2232-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

86
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋