Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25257
DC FieldValueLanguage
dc.contributor.authorAdipraja, Philip F. E.en_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorYang, Hua-Shengen_US
dc.contributor.authorWang, Wei-Jenen_US
dc.contributor.authorLiang, Deronen_US
dc.date.accessioned2024-11-01T06:26:21Z-
dc.date.available2024-11-01T06:26:21Z-
dc.date.issued2024/3/26-
dc.identifier.issn2168-2216-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25257-
dc.description.abstractIn batch production systems, detecting low-yield machines is essential for minimizing the production of defective pieces, which is a complex problem that currently requires multiple experts, considerable capital, or a combination of both to overcome. To solve this problem, we proposed a cost-efficient and straightforward method that involves using maximum likelihood estimation and bootstrap confidence intervals to estimate per-machine yield; this method enables identification of low-yield machines and generation of a list of these machines. Manufacturing engineers can use the list to perform necessary verification and maintenance processes. Before implementing this method, a manufacturer with 50-500 machines should build a dataset containing approximately 6-20 times as many batches as there are production machines. When this condition is met, the proposed method can be used effectively to detect up to five low-yield machines.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMSen_US
dc.subjectProductionen_US
dc.subjectYield estimationen_US
dc.subjectMaintenance engineeringen_US
dc.subjectPrognostics and health managementen_US
dc.subjectBatch production systemsen_US
dc.subjectReliabilityen_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectBatch productionen_US
dc.subjectexpectation-maximization (EM) algorithmen_US
dc.subjectmachine maintenen_US
dc.titleDetecting Low-Yield Machines in Batch Production Systems Based on Observed Defective Piecesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TSMC.2024.3374393-
dc.identifier.isiWOS:001193869700001-
dc.identifier.eissn2168-2232-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

86
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback