Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25266
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorLi, Botongen_US
dc.date.accessioned2024-11-01T06:26:24Z-
dc.date.available2024-11-01T06:26:24Z-
dc.date.issued2024/4/8-
dc.identifier.issn0862-7940-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25266-
dc.description.abstractThe Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an n-dimensional matrix eigenvalue problem is derived with a special matrix A:= [aij], that is, aij = 0 if i + j is odd.Based on the product formula, an integration method with a fictitious time, namely the fictitious time integration method (FTIM), is developed to obtain the higher-index eigenvalues. Also, we recover the symmetric potential function q(x) in the Sturm-Liouville operator by specifying a few lower-index eigenvalues, based on the product formula and the Newton iterative method.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERNATUREen_US
dc.relation.ispartofAPPLICATIONS OF MATHEMATICSen_US
dc.subjectsymmetric Sturm-Liouville problemen_US
dc.subjectinverse potential problemen_US
dc.subjectspecial matrix eigenvalue problemen_US
dc.subjectproduct formulaen_US
dc.subjectfictitious time integration methoden_US
dc.titleThe eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formulaen_US
dc.typejournal articleen_US
dc.identifier.doi10.21136/AM.2024.0005-21-
dc.identifier.isiWOS:001200339400001-
dc.identifier.eissn1572-9109-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

109
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback