Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25305
DC 欄位值語言
dc.contributor.authorKu, Cheng-Yuen_US
dc.contributor.authorLiu, Chih-Yuen_US
dc.date.accessioned2024-11-01T06:27:43Z-
dc.date.available2024-11-01T06:27:43Z-
dc.date.issued2024/4/1-
dc.identifier.issn2571-6255-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25305-
dc.description.abstractTo achieve successful prevention of fire incidents originating from human activities, it is imperative to possess a thorough understanding. This paper introduces a machine learning approach, specifically utilizing deep neural networks (DNN), to develop predictive models for fire occurrence in Keelung City, Taiwan. It investigates ten factors across demographic, architectural, and economic domains through spatial analysis and thematic maps generated from geographic information system data. These factors are then integrated as inputs for the DNN model. Through 50 iterations, performance indices including the coefficient of determination (R2), root mean square error (RMSE), variance accounted for (VAF), prediction interval (PI), mean absolute error (MAE), weighted index (WI), weighted mean absolute percentage error (WMAPE), Nash-Sutcliffe efficiency (NS), and the ratio of performance to deviation (RPD) are computed, with average values of 0.89, 7.30 x 10-2, 89.21, 1.63, 4.90 x 10-2, 0.97, 2.92 x 10-1, 0.88, and 4.84, respectively. The model's predictions, compared with historical data, demonstrate its efficacy. Additionally, this study explores the impact of various urban renewal strategies using the DNN model, highlighting the significant influence of economic factors on fire incidence. This underscores the importance of economic factors in mitigating fire incidents and emphasizes their consideration in urban renewal planning.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofFIRE-SWITZERLANDen_US
dc.subjectfire incidenceen_US
dc.subjectdeep neural networksen_US
dc.subjectgeographic information systemen_US
dc.subjecturban renewalen_US
dc.subjectfactoren_US
dc.titlePredictive Modeling of Fire Incidence Using Deep Neural Networksen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/fire7040136-
dc.identifier.isiWOS:001210099100001-
dc.relation.journalvolume7en_US
dc.relation.journalissue4en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptInstitute of Earth Sciences-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcid0000-0001-8533-0946-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

101
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋