Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25312
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2024-11-01T06:27:45Z-
dc.date.available2024-11-01T06:27:45Z-
dc.date.issued2024/4/29-
dc.identifier.issn0177-0667-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25312-
dc.description.abstractBecause the complete set of Trefftz functions for the 3D biharmonic equation is not yet well established, a multiple-direction Trefftz method (MDTM) and an in-plane biharmonic functions method (IPBFM) are deduced in the paper. Inspired by the Trefftz method for the 2D biharmonic equation, a novel MDTM incorporates planar directors into the 2D like Trefftz functions to solve the 3D biharmonic equation. These functions being a series of biharmonic polynomials of different degree, automatically satisfying the 3D biharmonic equation, are taken as the bases to expand the solution. Then, we derive a quite large class solution of the 3D biharmonic equation in terms of 3D harmonic functions, and 2D biharmonic functions in three sub-planes. The 2D biharmonic functions are formulated as the Trefftz functions in terms of the polar coordinates for each sub-plane. Introducing a projective variable, we can obtain the projective type general solution for the 3D Laplace equation, which is used to generate the 3D Trefftz type harmonic functions. Several numerical examples confirm the efficiency and accuracy of the proposed MDTM and IPBFM.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofENGINEERING WITH COMPUTERSen_US
dc.subjectThree-dimensional biharmonic equationen_US
dc.subjectCauchy problemen_US
dc.subjectDirectoren_US
dc.subjectMultiple-direction Trefftz methoden_US
dc.subjectIn-plane biharmonic functions methoden_US
dc.subjectBiharmonic polynomialen_US
dc.titleThe Trefftz methods for 3D biharmonic equation using directors and in-plane biharmonic functionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00366-024-01977-1-
dc.identifier.isiWOS:001209547100001-
dc.identifier.eissn1435-5663-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

156
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback