Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25312
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2024-11-01T06:27:45Z-
dc.date.available2024-11-01T06:27:45Z-
dc.date.issued2024/4/29-
dc.identifier.issn0177-0667-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25312-
dc.description.abstractBecause the complete set of Trefftz functions for the 3D biharmonic equation is not yet well established, a multiple-direction Trefftz method (MDTM) and an in-plane biharmonic functions method (IPBFM) are deduced in the paper. Inspired by the Trefftz method for the 2D biharmonic equation, a novel MDTM incorporates planar directors into the 2D like Trefftz functions to solve the 3D biharmonic equation. These functions being a series of biharmonic polynomials of different degree, automatically satisfying the 3D biharmonic equation, are taken as the bases to expand the solution. Then, we derive a quite large class solution of the 3D biharmonic equation in terms of 3D harmonic functions, and 2D biharmonic functions in three sub-planes. The 2D biharmonic functions are formulated as the Trefftz functions in terms of the polar coordinates for each sub-plane. Introducing a projective variable, we can obtain the projective type general solution for the 3D Laplace equation, which is used to generate the 3D Trefftz type harmonic functions. Several numerical examples confirm the efficiency and accuracy of the proposed MDTM and IPBFM.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofENGINEERING WITH COMPUTERSen_US
dc.subjectThree-dimensional biharmonic equationen_US
dc.subjectCauchy problemen_US
dc.subjectDirectoren_US
dc.subjectMultiple-direction Trefftz methoden_US
dc.subjectIn-plane biharmonic functions methoden_US
dc.subjectBiharmonic polynomialen_US
dc.titleThe Trefftz methods for 3D biharmonic equation using directors and in-plane biharmonic functionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00366-024-01977-1-
dc.identifier.isiWOS:001209547100001-
dc.identifier.eissn1435-5663-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

156
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋