Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25379
DC FieldValueLanguage
dc.contributor.authorChen, Yi-Tingen_US
dc.contributor.authorChang, Lenaen_US
dc.contributor.authorWang, Jung-Huaen_US
dc.date.accessioned2024-11-01T06:29:20Z-
dc.date.available2024-11-01T06:29:20Z-
dc.date.issued2024/6/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25379-
dc.description.abstractOil spills are a major threat to marine and coastal environments. Their unique radar backscatter intensity can be captured by synthetic aperture radar (SAR), resulting in dark regions in the images. However, many marine phenomena can lead to erroneous detections of oil spills. In addition, SAR images of the ocean include multiple targets, such as sea surface, land, ships, and oil spills and their look-alikes. The training of a multi-category classifier will encounter significant challenges due to the inherent class imbalance. Addressing this issue requires extracting target features more effectively. In this study, a lightweight U-Net-based model, Full-Scale Aggregated MobileUNet (FA-MobileUNet), was proposed to improve the detection performance for oil spills using SAR images. First, a lightweight MobileNetv3 model was used as the backbone of the U-Net encoder for feature extraction. Next, atrous spatial pyramid pooling (ASPP) and a convolutional block attention module (CBAM) were used to improve the capacity of the network to extract multi-scale features and to increase the speed of module calculation. Finally, full-scale features from the encoder were aggregated to enhance the network's competence in extracting features. The proposed modified network enhanced the extraction and integration of features at different scales to improve the accuracy of detecting diverse marine targets. The experimental results showed that the mean intersection over union (mIoU) of the proposed model reached more than 80% for the detection of five types of marine targets including sea surface, land, ships, and oil spills and their look-alikes. In addition, the IoU of the proposed model reached 75.85 and 72.67% for oil spill and look-alike detection, which was 18.94% and 25.55% higher than that of the original U-Net model, respectively. Compared with other segmentation models, the proposed network can more accurately classify the black regions in SAR images into oil spills and their look-alikes. Furthermore, the detection performance and computational efficiency of the proposed model were also validated against other semantic segmentation models.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORSen_US
dc.subjectoil spillsen_US
dc.subjectsynthetic aperture radar (SAR)en_US
dc.subjectU-Neten_US
dc.subjectsemantic segmentation modelsen_US
dc.titleFull-Scale Aggregated MobileUNet: An Improved U-Net Architecture for SAR Oil Spill Detectionen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s24123724-
dc.identifier.isiWOS:001256554000001-
dc.relation.journalvolume24en_US
dc.relation.journalissue12en_US
dc.identifier.eissn1424-8220-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
電機工程學系
Show simple item record

Page view(s)

83
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback