Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25421
DC FieldValueLanguage
dc.contributor.authorKao, Jeng-Hongen_US
dc.contributor.authorYang, Chia-Yingen_US
dc.contributor.authorLee, Jia-Weien_US
dc.contributor.authorChen, Jeng-Tzongen_US
dc.date.accessioned2024-11-01T06:30:27Z-
dc.date.available2024-11-01T06:30:27Z-
dc.date.issued2024/10/1-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25421-
dc.description.abstractThis paper not only derives an analytical solution for steady -state heat conduction problems in exchanger tubes but also can predict the location of numerical instability due to a degenerate scale in the boundary element method or the boundary integral equation method. Four shapes of the exchanger tubes including concentric annulus, eccentric annulus, confocal ellipses, and elliptical tube with a confocal crack are analytically studied by using degenerate kernels of polar, bipolar and elliptical coordinates, respectively. This work extends our prior research on numerical instability and its treatment for steady -state heat conduction problems in exchanger tubes using the dual boundary element method. Analytical solutions of the temperature field and conduction shape factor can be derived. Two main analytical tools, the degenerate kernel for the closed-form fundamental solution and the generalized Fourier expansion for the boundary densities in the null-field boundary integral equation are required. The analytical derivation process can clearly examine the occurring mechanism of numerical instability due to a zero denominator. The effectiveness of regularization techniques to promote the rank-deficiency by one to a full -rank system can be analytically examined in this paper.en_US
dc.language.isoEnglishen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERen_US
dc.subjectConduction shape factoren_US
dc.subjectDegenerate scaleen_US
dc.subjectDegenerate boundaryen_US
dc.subjectNull-field boundary integral equationen_US
dc.subjectCLEEFen_US
dc.subjectDegenerate kernelen_US
dc.titleAnalytical study for numerical instability of steady-state heat conduction problems in exchanger tubes using degenerate kernels in the null-field boundary integral equation methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2024.125785-
dc.identifier.isiWOS:001259933700001-
dc.relation.journalvolume231en_US
dc.identifier.eissn1879-2189-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

339
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback