Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25466
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2024-11-01T06:31:00Z-
dc.date.available2024-11-01T06:31:00Z-
dc.date.issued2024/11/1-
dc.identifier.issn0020-7462-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25466-
dc.description.abstractFor an autonomous nonlinear system, the Hopf bifurcation point along the equilibrium path is a critical feature that indicates whether the values of the parameters change from exhibiting fixed-point behavior to having a periodic orbit. To solve these problems, we developed a method of transforming an eigenvalue problem based on the Jacobian matrix at equilibrium into a minimization problem, enabling the rapid identification of a solution. Specifically, this generalized eigenvalue problem is solved by identifying the vector variable after reducing the number of eigenequations by one in the nonhomogeneous linear system. This can be achieved by normalizing the value of a selected nonzero component of the eigenvector and then moving the column containing this component to the other side of the equation. An appropriate merit function was established in terms of the Euclidean norm of the eigenequation, and this merit function was minimized using the golden section search algorithm to determine the eigenparameters of the bifurcation point. The accuracy of the method for identifying the parameter values and the corresponding imaginary eigenvalues at the Hopf bifurcation points was evaluated for numerous examples for both the continuous and discrete systems. The method was both fast and accurate. Moreover, its stability in the presence of noise was investigated, and the method was robust.en_US
dc.language.isoEnglishen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF NON-LINEAR MECHANICSen_US
dc.subjectHopf bifurcationen_US
dc.subjectContinuous and discrete systemsen_US
dc.subjectEigenvalue problemen_US
dc.subjectMinimization methodsen_US
dc.subjectGolden section search algorithmen_US
dc.titleRapid computation of Hopf bifurcation points of continuous and discrete systems through minimizationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ijnonlinmec.2024.104847-
dc.identifier.isiWOS:001284712100001-
dc.relation.journalvolume166en_US
dc.identifier.eissn1878-5638-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

161
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback