Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25490
DC FieldValueLanguage
dc.contributor.authorBiswal, Amitaen_US
dc.contributor.authorJwo, Dah-Jingen_US
dc.date.accessioned2024-11-01T06:32:39Z-
dc.date.available2024-11-01T06:32:39Z-
dc.date.issued2024/9/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25490-
dc.description.abstractOne technique that is widely used in various fields, including nonlinear target tracking, is the extended Kalman filter (EKF). The well-known minimum mean square error (MMSE) criterion, which performs magnificently under the assumption of Gaussian noise, is the optimization criterion that is frequently employed in EKF. Further, if the noises are loud (or heavy-tailed), its performance can drastically suffer. To overcome the problem, this paper suggests a new technique for maximum correntropy EKF with nonlinear regression (MCCEKF-NR) by using the maximum correntropy criterion (MCC) instead of the MMSE criterion to calculate the effectiveness and vitality. The preliminary estimates of the state and covariance matrix in MCKF are provided via the state mean vector and covariance matrix propagation equations, just like in the conventional Kalman filter. In addition, a newly designed fixed-point technique is used to update the posterior estimates of each filter in a regression model. To show the practicality of the proposed strategy, we propose an effective implementation for positioning enhancement in GPS navigation and radar measurement systems.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPLIED SCIENCES-BASELen_US
dc.subjectextended Kalman filteren_US
dc.subjectmaximum correntropy criterion (MCC)en_US
dc.subjectfixed-point iterationen_US
dc.subjectnonlinear regressionen_US
dc.titleMaximum Correntropy Extended Kalman Filtering with Nonlinear Regression Technique for GPS Navigationen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app14177657-
dc.identifier.isiWOS:001311277600001-
dc.relation.journalvolume14en_US
dc.relation.journalissue17en_US
dc.identifier.eissn2076-3417-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

87
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback