Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25517
DC FieldValueLanguage
dc.contributor.authorOu, Tzu-Yuen_US
dc.contributor.authorChang, Li-Chunen_US
dc.contributor.authorAnnalakshmi, Muthaiahen_US
dc.contributor.authorLee, Jyh-Weien_US
dc.contributor.authorChen, Yung-, Ien_US
dc.date.accessioned2024-11-01T09:18:06Z-
dc.date.available2024-11-01T09:18:06Z-
dc.date.issued2024-
dc.identifier.issn0257-8972-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25517-
dc.description.abstractIn this study, TiZrHfTa films were cosputtered through cyclical gradient composition deposition by using four single-element targets connected to direct-current power supplies. Multilayered and columnar structures formed at low and high rotation speeds of the substrate holder (R-H), respectively. (TiZrHfTa)N-x thin films were then prepared through reactive cosputtering by using Ar/N-2 mixed gas. A high R-H value resulted in these films having homogeneous structures. Without the addition of reactive nitrogen gas, the fabricated metallic Ti0.24Zr0.23Hf0.27Ta0.26 film exhibited a valence electron concentration of 4.26, which resulted in the formation of a body-centered cubic (bcc) phase; a hardness of 4.7 GPa; and an elastic modulus of 104 GPa. (TiZrHfTa)N-x films with stoichiometric ratios (x) ranging from 0.59 to 0.97 were obtained by adjusting the reactive gas ratio f(N2) (N-2/(N-2 + Ar)) from 0.1 to 0.7. The introduction of N into the TiZrHfTa crystallites caused the bcc phase to transform into a face-centered cubic phase and enhanced the mechanical properties of the films, with their hardness and elastic modulus increasing to 13.8-25.5 and 235-290 GPa, respectively. Nanoindentation, scratch, Rockwell-C adhesion, and potentiodynamic polarization tests indicated that among the prepared (TiZrHfTa)N-x films, the (Ti0.17Zr0.25Hf0.20Ta0.38)N-0.75 film exhibited the best mechanical and anticorrosive properties. Target poisoning accompanied by defect formation affected the mechanical properties of the (TiZrHfTa)N-x films. The anticorrosive properties of the (TiZrHfTa)N-x films were dominated by the high-entropy effect through alloying with Ta and the adhesion strength between the films and substrates.en_US
dc.publisherELSEVIER SCIENCE SAen_US
dc.relation.ispartofSURFACE & COATINGS TECHNOLOGYen_US
dc.subjectAnticorrosive propertiesen_US
dc.subjectCosputteringen_US
dc.subjectMechanical propertiesen_US
dc.subjectMultiprincipal-element nitride filmsen_US
dc.titleEffects of nitrogen flow ratio on the mechanical and anticorrosive properties of cosputtered (TiZrHfTa)N x filmsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.surfcoat.2024.130410-
dc.identifier.isiWOS:001331560200001-
dc.relation.journalvolume477en_US
dc.identifier.eissn1879-3347-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Optoelectronics and Materials Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-0689-5709-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:光電與材料科技學系
Show simple item record

Page view(s)

92
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback