Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25519
DC FieldValueLanguage
dc.contributor.authorSu, Yu-Shengen_US
dc.contributor.authorHu, Yu-Chengen_US
dc.contributor.authorWu, Yun-Chinen_US
dc.contributor.authorLo, Ching-Tengen_US
dc.date.accessioned2024-11-01T09:18:06Z-
dc.date.available2024-11-01T09:18:06Z-
dc.date.issued2024/9/1-
dc.identifier.issn1989-1660-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25519-
dc.description.abstractOver the past decade, excessive groundwater extraction has been the leading cause of land subsidence in Taiwan's Chuoshui River Alluvial Fan (CRAF) area. To effectively manage and monitor groundwater resources, assessing the effects of varying seasonal groundwater extraction on groundwater levels is necessary. This study focuses on the CRAF in Taiwan. We applied three artificial intelligence techniques for three predictive models: multiple linear regression (MLR), support vector regression (SVR), and Long Short-Term Memory Networks (LSTM). Each prediction model evaluated the extraction rate, considering temporal and spatial correlations. The study aimed to predict groundwater level variations by comparing the results of different models. This study used groundwater level and extraction data from the CRAF area in Taiwan. The dataset we constructed was the input variable for predicting groundwater level variations. The experimental results show that the LSTM method is the most suitable and stable deep learning model for predicting groundwater level variations in the CRAF, Taiwan, followed by the SVR method and finally the MLR method. Additionally, when considering different distances and depths of pumping data at groundwater level monitoring stations, it was found that the Guosheng and Hexing groundwater level monitoring stations are best predicted using pumping data within a distance of 20 kilometers and a depth of 20 meters.en_US
dc.language.isoEnglishen_US
dc.publisherUNIV INT RIOJA-UNIRen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCEen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectChuoshui River Alluvial Fanen_US
dc.subjectGroundwater Level Predictionen_US
dc.subjectWater Pumpingen_US
dc.titleEvaluating the Impact of Pumping on Groundwater Level Prediction in the Chuoshui River Alluvial Fan Using Artificial Intelligence Techniquesen_US
dc.typejournal articleen_US
dc.identifier.doi10.9781/ijimai.2024.04.002-
dc.identifier.isiWOS:001330822500004-
dc.relation.journalvolume8en_US
dc.relation.journalissue7en_US
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1English-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextno fulltext-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

133
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback