Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25519
DC 欄位值語言
dc.contributor.authorSu, Yu-Shengen_US
dc.contributor.authorHu, Yu-Chengen_US
dc.contributor.authorWu, Yun-Chinen_US
dc.contributor.authorLo, Ching-Tengen_US
dc.date.accessioned2024-11-01T09:18:06Z-
dc.date.available2024-11-01T09:18:06Z-
dc.date.issued2024/9/1-
dc.identifier.issn1989-1660-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25519-
dc.description.abstractOver the past decade, excessive groundwater extraction has been the leading cause of land subsidence in Taiwan's Chuoshui River Alluvial Fan (CRAF) area. To effectively manage and monitor groundwater resources, assessing the effects of varying seasonal groundwater extraction on groundwater levels is necessary. This study focuses on the CRAF in Taiwan. We applied three artificial intelligence techniques for three predictive models: multiple linear regression (MLR), support vector regression (SVR), and Long Short-Term Memory Networks (LSTM). Each prediction model evaluated the extraction rate, considering temporal and spatial correlations. The study aimed to predict groundwater level variations by comparing the results of different models. This study used groundwater level and extraction data from the CRAF area in Taiwan. The dataset we constructed was the input variable for predicting groundwater level variations. The experimental results show that the LSTM method is the most suitable and stable deep learning model for predicting groundwater level variations in the CRAF, Taiwan, followed by the SVR method and finally the MLR method. Additionally, when considering different distances and depths of pumping data at groundwater level monitoring stations, it was found that the Guosheng and Hexing groundwater level monitoring stations are best predicted using pumping data within a distance of 20 kilometers and a depth of 20 meters.en_US
dc.language.isoEnglishen_US
dc.publisherUNIV INT RIOJA-UNIRen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCEen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectChuoshui River Alluvial Fanen_US
dc.subjectGroundwater Level Predictionen_US
dc.subjectWater Pumpingen_US
dc.titleEvaluating the Impact of Pumping on Groundwater Level Prediction in the Chuoshui River Alluvial Fan Using Artificial Intelligence Techniquesen_US
dc.typejournal articleen_US
dc.identifier.doi10.9781/ijimai.2024.04.002-
dc.identifier.isiWOS:001330822500004-
dc.relation.journalvolume8en_US
dc.relation.journalissue7en_US
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairetypejournal article-
item.languageiso639-1English-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-1531-3363-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

133
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋