Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25528
標題: Hydrological Data Projection Using Empirical Mode Decomposition: Applications in a Changing Climate
作者: Chang, Che-Wei
Lee, Jung-Chen
Huang, Wen-Cheng 
關鍵字: non-stationary hydrological data;empirical mode decomposition;sea surface temperature;El Ni & ntilde;o
公開日期: 2024
出版社: MDPI
卷: 16
期: 18
來源出版物: WATER
摘要: 
This paper demonstrates the effectiveness and superiority of Empirical Mode Decomposition (EMD) in projecting non-stationary hydrological data. The study focuses on daily Sea Surface Temperature (SST) sequences in the Ni & ntilde;o 3.4 region and uses EMD to forecast the probability of El Ni & ntilde;o events. Applying the Mann-Kendall test at the 5% significance level reveals a significant increasing trend in SST changes in this region, particularly noticeable after 1980. This trend is associated with the occurrence of El Ni & ntilde;o and La Ni & ntilde;a events, which have a recurrence interval of approximately 8.4 years and persist for over a year. The modified Oceanic Ni & ntilde;o Index (ONI) proposed in this study demonstrates high forecast accuracy, with 97.56% accuracy for El Ni & ntilde;o and 89.80% for La Ni & ntilde;a events. Additionally, the EMD of SST data results in 13 Intrinsic Mode Functions (IMFs) and a residual component. The oscillation period increases with each IMF level, with IMF7 exhibiting the largest amplitude, fluctuating between +/- 1 degrees C. The residual component shows a significant upward trend, with an average annual increase of 0.0107 degrees C. These findings reveal that the EMD-based data generation method overcomes the limitations of traditional hydrological models in managing non-stationary sequences, representing a notable advancement in data-driven hydrological time series modeling. Practically, the EMD-based 5-year moving process can generate daily sea temperature sequences for the coming year in this region, offering valuable insights for assessing El Ni & ntilde;o probabilities and facilitating annual updates.
URI: http://scholars.ntou.edu.tw/handle/123456789/25528
DOI: 10.3390/w16182669
顯示於:河海工程學系

顯示文件完整紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋