Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25541
Title: A Cumulant-Based Method for Acquiring GNSS Signals
Authors: Wang, He-Sheng 
Wang, Hou-Yu
Jwo, Dah-Jing 
Keywords: GNSS;Galileo;BOC;higher-order cumulant
Issue Date: 2024
Publisher: MDPI
Journal Volume: 24
Journal Issue: 19
Source: SENSORS
Abstract: 
Global Navigation Satellite Systems (GNSS) provide positioning, velocity, and time services for civilian applications. A critical step in the positioning process is the acquisition of visible satellites in the sky. Modern GNSS systems, such as Galileo-developed and maintained by the European Union-utilize a new modulation technique known as Binary Offset Carrier (BOC). However, BOC signals introduce multiple side-peaks in their autocorrelation function, which can lead to significant errors during the acquisition process. In this paper, we propose a novel acquisition method based on higher-order cumulants that effectively eliminates these side-peaks. This method is capable of simultaneously acquiring both conventional ranging signals, such as GPS C/A code, and BOC-modulated signals. The effectiveness of the proposed method is demonstrated through the acquisition of simulated signals, with a comparison to traditional methods. Additionally, we apply the proposed method to real satellite signals to further validate its performance. Our results show that the proposed method successfully suppresses side-peaks, improves acquisition accuracy in weak signal environments, and demonstrates potential for indoor GNSS applications. The study concludes that while the method may increase computational load, its performance in challenging conditions makes it a promising approach for future GNSS receiver designs.
URI: http://scholars.ntou.edu.tw/handle/123456789/25541
DOI: 10.3390/s24196234
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

100
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback