Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25558
DC FieldValueLanguage
dc.contributor.authorHong, Li-Danen_US
dc.contributor.authorYeih, Weichungen_US
dc.contributor.authorKu, Cheng-Yuen_US
dc.contributor.authorSu, Yanen_US
dc.date.accessioned2024-11-01T09:18:29Z-
dc.date.available2024-11-01T09:18:29Z-
dc.date.issued2024/12/1-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25558-
dc.description.abstractThis paper introduces an advanced localized space-time Trefftz method tackling boundary value predicaments within complex two-dimensional domains governed by diffusion equations. In contrast to the widespread spacetime collocation Trefftz method, which typically produces dense and ill-conditioned matrices, the proposed strategy employs a localized collocation scheme to remove these constraints. In particular, this is beneficial in multi-connected configurations or when dealing with significant variations in field values. To the best of our knowledge, this is the first space-time collocation Trefftz method adaptation, which is referred to as the localized space-time Trefftz method in this paper. The latter combines the space-time collocation Trefftz method principles, which allows to eliminate the need for mesh and numerical quadrature in its application. The localized space-time Trefftz method represents each interior node expressed as a linear blend of its immediate neighbors, while the space-time collocation Trefftz method applies numerical techniques within distinct subdomains. A sparse system of linear algebraic equations with internal points satisfying the governing equation, and boundary points satisfying the boundary conditions, allows to obtain numerical solutions using matrix systems. The localized space-time Trefftz method retains the easy-to-use properties and mesh-free structure of the space-time collocation Trefftz method, and it mitigates its ill-conditioning characteristics. Due to the localization principle and the consideration of overlapping subdomains, the solutions in the proposed localized space-time Trefftz method are more simply and compactly expressed compared with those in the space-time collocation Trefftz method, especially when dealing with multiply-connected domains. Numerical examples for simply-connected and multiply-connected domains are then provided to demonstrate the high precision and simplicity of the proposed localized space-time Trefftz method. The obtained results show that the latter has very high accuracy in solving two-dimensional diffusion problems. Compared with the traditional space-time collocation Trefftz method, the proposed mesh-free strategy yields solutions with higher precision while significantly reducing the instability.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofENGINEERING ANALYSIS WITH BOUNDARY ELEMENTSen_US
dc.subjectSpace-time Trefftz methoden_US
dc.subjectLocalized methoden_US
dc.subjectDiffusion equationen_US
dc.titleLocalized space-time Trefftz method for diffusion equations in complex domainsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2024.105977-
dc.identifier.isiWOS:001333890200001-
dc.relation.journalvolume169en_US
dc.identifier.eissn1873-197X-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptInstitute of Earth Sciences-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcid0000-0002-5077-865X-
crisitem.author.orcid0000-0001-8533-0946-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

175
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback