Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25652
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2025-06-03T03:46:21Z-
dc.date.available2025-06-03T03:46:21Z-
dc.date.issued2025/1/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25652-
dc.description.abstractTo solve the nonlinear vibration problems of second- and third-order nonlinear oscillators, a modified harmonic balance method (HBM) is developed in this paper. In the linearized technique, we decompose the nonlinear terms of the governing equation on two sides via a constant weight factor; then, they are linearized with respect to a fundamental periodic function satisfying the specified initial conditions. The periodicity of nonlinear oscillation is reflected in the Mathieu-type ordinary differential equation (ODE) with periodic forcing terms appeared on the right-hand side. In each iteration of the linearized harmonic balance method (LHBM), we simply solve a small-size linear system to determine the Fourier coefficients and the vibration frequency. Because the algebraic manipulations required for the LHBM are quite saving, it converges fast with a few iterations. For the Duffing oscillator, a frequency-amplitude formula is derived in closed form, which improves the accuracy of frequency by about three orders compared to that obtained by the Hamiltonian-based frequency-amplitude formula. To reduce the computational cost of analytically solving the third-order nonlinear jerk equations, the LHBM invoking a linearization technique results in the Mathieu-type ODE again, of which the harmonic balance equations are easily deduced and solved. The LHBM can achieve quite accurate periodic solutions, whose accuracy is assessed by using the fourth-order Runge-Kutta numerical integration method. The optimal value of weight factor is chosen such that the absolute error of the periodic solution is minimized.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectstrongly nonlinear oscillatorsen_US
dc.subjectanalytic periodic solutionen_US
dc.subjectharmonic balance methoden_US
dc.subjectjerk equationen_US
dc.subjectDuffing equationen_US
dc.titleLinearized Harmonic Balance Method for Seeking the Periodic Vibrations of Second- and Third-Order Nonlinear Oscillatorsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13010162-
dc.identifier.isiWOS:001393657900001-
dc.relation.journalvolume13en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

48
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback