Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25652
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2025-06-03T03:46:21Z-
dc.date.available2025-06-03T03:46:21Z-
dc.date.issued2025/1/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25652-
dc.description.abstractTo solve the nonlinear vibration problems of second- and third-order nonlinear oscillators, a modified harmonic balance method (HBM) is developed in this paper. In the linearized technique, we decompose the nonlinear terms of the governing equation on two sides via a constant weight factor; then, they are linearized with respect to a fundamental periodic function satisfying the specified initial conditions. The periodicity of nonlinear oscillation is reflected in the Mathieu-type ordinary differential equation (ODE) with periodic forcing terms appeared on the right-hand side. In each iteration of the linearized harmonic balance method (LHBM), we simply solve a small-size linear system to determine the Fourier coefficients and the vibration frequency. Because the algebraic manipulations required for the LHBM are quite saving, it converges fast with a few iterations. For the Duffing oscillator, a frequency-amplitude formula is derived in closed form, which improves the accuracy of frequency by about three orders compared to that obtained by the Hamiltonian-based frequency-amplitude formula. To reduce the computational cost of analytically solving the third-order nonlinear jerk equations, the LHBM invoking a linearization technique results in the Mathieu-type ODE again, of which the harmonic balance equations are easily deduced and solved. The LHBM can achieve quite accurate periodic solutions, whose accuracy is assessed by using the fourth-order Runge-Kutta numerical integration method. The optimal value of weight factor is chosen such that the absolute error of the periodic solution is minimized.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectstrongly nonlinear oscillatorsen_US
dc.subjectanalytic periodic solutionen_US
dc.subjectharmonic balance methoden_US
dc.subjectjerk equationen_US
dc.subjectDuffing equationen_US
dc.titleLinearized Harmonic Balance Method for Seeking the Periodic Vibrations of Second- and Third-Order Nonlinear Oscillatorsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13010162-
dc.identifier.isiWOS:001393657900001-
dc.relation.journalvolume13en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2227-7390-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋