Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25697
DC FieldValueLanguage
dc.contributor.authorJwo, Dah-Jingen_US
dc.contributor.authorChang, Yien_US
dc.contributor.authorCho, Ta-Shunen_US
dc.date.accessioned2025-06-05T02:36:13Z-
dc.date.available2025-06-05T02:36:13Z-
dc.date.issued2025/1/1-
dc.identifier.issn1526-1492-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25697-
dc.description.abstractIn this paper, an advanced satellite navigation filter design, referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter (VBMCEKF), is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers. The proposed design modifies the extended Kalman filter (EKF) for the global navigation satellite system (GNSS), integrating the maximum correntropy criterion (MCC) and the variational Bayesian (VB) method. This adaptive algorithm effectively reduces non-line-of-sight (NLOS) reception contamination and improves estimation accuracy, particularly in time-varying GNSS measurements. Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise. By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration, the VBMCEKF achieves superior filtering performance in challenging GNSS conditions. The method's adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments.en_US
dc.language.isoEnglishen_US
dc.publisherTECH SCIENCE PRESSen_US
dc.relation.ispartofCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.subjectMaximum correntropy criterionen_US
dc.subjectvariational Bayesianen_US
dc.subjectextended Kalman filteren_US
dc.subjectGNSSen_US
dc.titleA Robust GNSS Navigation Filter Based on Maximum Correntropy Criterion with Variational Bayesian for Adaptivityen_US
dc.typejournal articleen_US
dc.identifier.doi10.32604/cmes.2025.05782-
dc.identifier.isiWOS:001447425300001-
dc.relation.journalvolume142en_US
dc.relation.journalissue3en_US
dc.relation.pages2771-2789en_US
dc.identifier.eissn1526-1506-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
item.languageiso639-1English-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:商船學系
輪機工程學系
地球科學研究所
通訊與導航工程學系
Show simple item record

Page view(s)

47
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback