Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25705
標題: Aspect-Based Sentiment Analysis with Enhanced Opinion Tree Parsing and Parameter-Efficient Fine-Tuning for Edge AI
作者: Liao, Shih-wei
Wang, Ching-Shun
Yeh, Chun-Chao 
Lin, Jeng-Wei
關鍵字: social media text mining;aspect-based sentiment analysis;opinion tree parsing;parameter-efficient transfer learning
公開日期: 2025
出版社: MDPI
卷: 14
期: 4
來源出版物: ELECTRONICS
摘要: 
Understanding user opinions from user comments or reviews in social media text mining is essential for marketing campaigns and many other applications. However, analyzing social media user comments presents significant challenges due to the complexity of discerning relationships between opinions and aspects, particularly when comments vary greatly in length. To effectively explore aspects and opinions in the sentences, techniques based on mining opinion sentiment of the referred aspects (implicitly or explicitly) in the user comments with ACOS (aspect-category-opinion-sentiment) quadruple extraction have been proposed. Among many others, the opinion tree parsing (OTP) scheme has been shown to be effective and efficient for the ACOS quadruple extraction task in aspect-based sentiment analysis (ABAS). In this study, we continue the efforts to design an efficient ABSA scheme. We extend the original OTP scheme further with richer context parsing rules, utilizing conjunctions and semantic modifiers to provide more context information in the sentence and thus effectively improving the accuracy of the analysis. Meanwhile, regarding the limitations of computation resources for edge devices in edge computing scenario, we also investigate the trade-off between computation saving (in terms of the percentage of model parameters to be updated) and the model's performance (in terms of inference accuracy) on the proposed scheme under PEFT (parameter-efficient fine-tuning). We evaluate the proposed scheme on publicly available ACOS datasets. Experiment results show that the proposed enhanced OTP (eOTP) model improves the OTP scheme both in precision and recall measurements on the public ACOS datasets. Meanwhile, in the design trade-off evaluation for resource-constrained devices, the experiment results show that, in model training, eOTP requires very limited parameters (less than 1%) to be retrained by keeping most of the parameters frozen (not modified) in the fine-tuning process, at the cost of a slight performance drop (around 4%) in F1-score compared with the case of full fine-tuning. These demonstrate that the proposed scheme is efficient and feasible for resource-constrained scenarios such as for mobile edge/fog computing services.
URI: http://scholars.ntou.edu.tw/handle/123456789/25705
ISSN: 2079-9292
DOI: 10.3390/electronics14040690
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

44
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋