Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 系統工程暨造船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25721
DC 欄位值語言
dc.contributor.authorLi, Kuo-Haoen_US
dc.contributor.authorWang, Chao-Nanen_US
dc.contributor.authorTang, Yao-Chien_US
dc.date.accessioned2025-06-05T08:16:43Z-
dc.date.available2025-06-05T08:16:43Z-
dc.date.issued2025/1/1-
dc.identifier.issn1070-9622-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25721-
dc.description.abstractThis study proposed a novel machine learning-driven methodology for detecting potential defects in computer numerical control (CNC) spindle manufacturing. The methodology, which analyzes 13 real-world built-in spindles, employs t-distributed stochastic neighbor embedding (t-SNE) for data visualization and enhances k-means++ clustering with the Davies-Bouldin Index (DBI) for the automatic selection of the optimal number of clusters, significantly surpassing traditional inspection methods in identifying subtle yet critical defects. This study utilized the fast Fourier transform (FFT) for precise feature extraction. The integration of these advanced algorithms accurately identified defects and categorized them, thus optimizing manufacturing processes. The inclusion of the DBI in the k-means++ clustering algorithm facilitated an objective evaluation of cluster quality, ensuring that the selected number of clusters accurately represents the underlying data patterns. This automated selection of the optimal k value enhanced the stability and reliability of the defect detection process. The proposed methodology substantially reduced the yield of defective spindles by identifying and addressing defects before spindle installation in CNC machines. The proactive defect detection and intervention system rectified potential failures at an early stage and improved the overall quality control processes. This proactive approach enhanced operational efficiency and reliability, reduced rework and warranty claims costs, and aligned with industrial needs while addressing a critical gap in academic research. This study significantly contributes to spindle manufacturing, ensuring high-quality production outcomes and bridging important gaps in both industrial application and academic research.en_US
dc.language.isoEnglishen_US
dc.publisherWILEYen_US
dc.relation.ispartofSHOCK AND VIBRATIONen_US
dc.titleEnhancing Latent Defect Detection in Built-In Spindle Assembly Lines Through Vibration Data Analysisen_US
dc.typejournal articleen_US
dc.identifier.doi10.1155/vib/7434412-
dc.identifier.isiWOS:001455168900001-
dc.relation.journalvolume2025en_US
dc.relation.journalissue1en_US
dc.identifier.eissn1875-9203-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:系統工程暨造船學系
顯示文件簡單紀錄

Page view(s)

34
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋