Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25757
DC FieldValueLanguage
dc.contributor.authorYen, Mao-Hsuen_US
dc.contributor.authorLee, Si-Hueien_US
dc.contributor.authorLee, Chien-Changen_US
dc.contributor.authorChen, Huie-Youen_US
dc.contributor.authorLin, Bor-Shingen_US
dc.date.accessioned2025-06-06T08:30:53Z-
dc.date.available2025-06-06T08:30:53Z-
dc.date.issued2024/1/1-
dc.identifier.issn1534-4320-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25757-
dc.description.abstractA long-term gait-balance monitoring system for various terrain types was developed using an inertial measurement unit (IMU) and deep-learning model. The system aims to identify unstable gait caused by lower-limb degeneration to prevent fall-related injuries. Unlike previous studies that have only focused on gait stability in flat terrain walking, the proposed system is also capable of analyzing stability on stairs and slopes. A lightweight, nine-axis IMU was used for data collection, and a combined convolutional neural network with gated recurrent unit model was implemented on the portable Raspberry Pi Zero 2 W for predicting Berg balance scale (BBS) scores. The BBS scores and gait data were then wirelessly transmitted to a cloud provider for long-term data storage. The system is as small and lightweight as a baseball and can monitor users for extended periods. The system can identify abnormal balance scores to provides physicians with long-term gait information, assisting their analysis and decision-making. This prevents falling and the corresponding consumption in healthcare resources that comes with fall-related injuries.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERINGen_US
dc.subjectDeep learningen_US
dc.subjectgait balanceen_US
dc.subjectlong-term monitoringen_US
dc.subjectlong-term monitoringen_US
dc.subjectedge computingen_US
dc.subjectedge computingen_US
dc.subjectBerg balance scale (BBS)en_US
dc.subjectBerg balance scale (BBS)en_US
dc.subjectBerg balance scale (BBS)en_US
dc.titleLong-Term Gait-Balance Monitoring Artificial Intelligence System for Various Terrain Typesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TNSRE.2024.3502511-
dc.identifier.isiWOS:001361973900002-
dc.relation.journalvolume32en_US
dc.relation.pages4155-4163en_US
dc.identifier.eissn1558-0210-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-9195-4173-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

36
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback