Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25769
DC 欄位值語言
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorTsao, Chia-Yuen_US
dc.date.accessioned2025-06-07T03:24:02Z-
dc.date.available2025-06-07T03:24:02Z-
dc.date.issued2024/11/30-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25769-
dc.description.abstractIn this study, we developed a lightweight and rapid convolutional neural network (CNN) architecture for chest X-ray images; it primarily consists of a redesigned feature extraction (FE) module and multiscale feature (MF) module and validated using publicly available COVID-19 datasets. Experiments were conducted on multiple updated versions of the COVID-19 Radiography Database, a publicly accessible dataset on Kaggle. The database contained images categorized into three classes: COVID-19 coronavirus, viral or bacterial pneumonia, and normal. The results revealed that the proposed method achieved a training accuracy of 99.85% and a validation accuracy of 96.28% when detecting the three classes. In the test set, the optimal results were 96.03% accuracy for COVID-19, 97.10% accuracy for viral or bacterial pneumonia, and 97.86% accuracy for normal individuals. By reducing the computational requirements and improving the speed of the model, the proposed method can achieve real-time, low-error performance to help medical professionals with rapid diagnosis of COVID-19.en_US
dc.language.isoEnglishen_US
dc.publisherNATURE PORTFOLIOen_US
dc.relation.ispartofSCIENTIFIC REPORTSen_US
dc.subjectCOVID-19en_US
dc.subjectConvolutional neural networksen_US
dc.subjectChest x-ray imagingen_US
dc.subjectLightweight architectureen_US
dc.subjectComputer-aided diagnosisen_US
dc.titleLightweight convolutional neural network for chest X-ray images classificationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1038/s41598-024-80826-z-
dc.identifier.isiWOS:001367109000002-
dc.relation.journalvolume14en_US
dc.relation.journalissue1en_US
item.languageiso639-1English-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextno fulltext-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

34
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋