Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25769
DC FieldValueLanguage
dc.contributor.authorYen, Chih-Taen_US
dc.contributor.authorTsao, Chia-Yuen_US
dc.date.accessioned2025-06-07T03:24:02Z-
dc.date.available2025-06-07T03:24:02Z-
dc.date.issued2024/11/30-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25769-
dc.description.abstractIn this study, we developed a lightweight and rapid convolutional neural network (CNN) architecture for chest X-ray images; it primarily consists of a redesigned feature extraction (FE) module and multiscale feature (MF) module and validated using publicly available COVID-19 datasets. Experiments were conducted on multiple updated versions of the COVID-19 Radiography Database, a publicly accessible dataset on Kaggle. The database contained images categorized into three classes: COVID-19 coronavirus, viral or bacterial pneumonia, and normal. The results revealed that the proposed method achieved a training accuracy of 99.85% and a validation accuracy of 96.28% when detecting the three classes. In the test set, the optimal results were 96.03% accuracy for COVID-19, 97.10% accuracy for viral or bacterial pneumonia, and 97.86% accuracy for normal individuals. By reducing the computational requirements and improving the speed of the model, the proposed method can achieve real-time, low-error performance to help medical professionals with rapid diagnosis of COVID-19.en_US
dc.language.isoEnglishen_US
dc.publisherNATURE PORTFOLIOen_US
dc.relation.ispartofSCIENTIFIC REPORTSen_US
dc.subjectCOVID-19en_US
dc.subjectConvolutional neural networksen_US
dc.subjectChest x-ray imagingen_US
dc.subjectLightweight architectureen_US
dc.subjectComputer-aided diagnosisen_US
dc.titleLightweight convolutional neural network for chest X-ray images classificationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1038/s41598-024-80826-z-
dc.identifier.isiWOS:001367109000002-
dc.relation.journalvolume14en_US
dc.relation.journalissue1en_US
item.languageiso639-1English-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextno fulltext-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

34
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback