Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25838
DC 欄位值語言
dc.contributor.authorChang, Lenaen_US
dc.contributor.authorChen, Yi-Tingen_US
dc.contributor.authorCheng, Ching-Minen_US
dc.contributor.authorChang, Yang-Langen_US
dc.contributor.authorMa, Shang-Chihen_US
dc.date.accessioned2025-06-07T06:59:06Z-
dc.date.available2025-06-07T06:59:06Z-
dc.date.issued2024-10-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25838-
dc.description.abstractThis study proposed an improved full-scale aggregated MobileUNet (FA-MobileUNet) model to achieve more complete detection results of oil spill areas using synthetic aperture radar (SAR) images. The convolutional block attention module (CBAM) in the FA-MobileUNet was modified based on morphological concepts. By introducing the morphological attention module (MAM), the improved FA-MobileUNet model can reduce the fragments and holes in the detection results, providing complete oil spill areas which were more suitable for describing the location and scope of oil pollution incidents. In addition, to overcome the inherent category imbalance of the dataset, label smoothing was applied in model training to reduce the model's overconfidence in majority class samples while improving the model's generalization ability. The detection performance of the improved FA-MobileUNet model reached an mIoU (mean intersection over union) of 84.55%, which was 17.15% higher than that of the original U-Net model. The effectiveness of the proposed model was then verified using the oil pollution incidents that significantly impacted Taiwan's marine environment. Experimental results showed that the extent of the detected oil spill was consistent with the oil pollution area recorded in the incident reports.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofSENSORSen_US
dc.subjectoil spillsen_US
dc.subjectU-Net modelen_US
dc.subjectsynthetic aperture radar (SAR)en_US
dc.subjectconvolutional block attention module (CBAM)en_US
dc.subjectlabel smoothingen_US
dc.titleMarine Oil Pollution Monitoring Based on a Morphological Attention U-Net Using SAR Imagesen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/s24206768-
dc.identifier.isiWOS:001341663400001-
dc.relation.journalvolume24en_US
dc.relation.journalissue20en_US
dc.identifier.eissn1424-8220-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

23
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋