Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25857
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorFu, Zhuojiaen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2025-06-07T06:59:13Z-
dc.date.available2025-06-07T06:59:13Z-
dc.date.issued2025-04-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25857-
dc.description.abstractA new concept of projective solution is introduced for the multi-dimensional Laplace equations. We project the field point onto a characteristic vector to obtain a projective variable, which can be used to reduce the Laplace equations to a second-order ordinary differential equation with only a leading term multiplied by the squared norm of the characteristic vector. The projective solutions involve characteristic vectors as parameters, which must be complex numbers to satisfy a null equation. Since the projective variable is a complex variable, we can construct the analytic function based on the conventional complex analytic function theory. Both the analytic function and the Cauchy-Riemann equations are generalized for the multi-dimensional Laplace equations. A powerful numerical technique to solve the 3D Laplace equation with high accuracy is available by further developing the Trefftz-type bases. Numerical experiments confirm the accuracy and efficiency of the projective solutions method (PSM).en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectLaplace equationsen_US
dc.subjectcharacteristic vectoren_US
dc.subjectprojective solutions methoden_US
dc.subjectanalytic functionsen_US
dc.subjectgeneralized Cauchy-Riemann equationsen_US
dc.titleMulti-Dimensional Analytic Functions for Laplace Equations and Generalized Cauchy-Riemann Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13081246-
dc.identifier.isiWOS:001475286400001-
dc.relation.journalvolume13en_US
dc.relation.journalissue8en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

Page view(s)

37
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋