Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25857
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorFu, Zhuojiaen_US
dc.contributor.authorKuo, Chung-Lunen_US
dc.date.accessioned2025-06-07T06:59:13Z-
dc.date.available2025-06-07T06:59:13Z-
dc.date.issued2025-04-10-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25857-
dc.description.abstractA new concept of projective solution is introduced for the multi-dimensional Laplace equations. We project the field point onto a characteristic vector to obtain a projective variable, which can be used to reduce the Laplace equations to a second-order ordinary differential equation with only a leading term multiplied by the squared norm of the characteristic vector. The projective solutions involve characteristic vectors as parameters, which must be complex numbers to satisfy a null equation. Since the projective variable is a complex variable, we can construct the analytic function based on the conventional complex analytic function theory. Both the analytic function and the Cauchy-Riemann equations are generalized for the multi-dimensional Laplace equations. A powerful numerical technique to solve the 3D Laplace equation with high accuracy is available by further developing the Trefftz-type bases. Numerical experiments confirm the accuracy and efficiency of the projective solutions method (PSM).en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectLaplace equationsen_US
dc.subjectcharacteristic vectoren_US
dc.subjectprojective solutions methoden_US
dc.subjectanalytic functionsen_US
dc.subjectgeneralized Cauchy-Riemann equationsen_US
dc.titleMulti-Dimensional Analytic Functions for Laplace Equations and Generalized Cauchy-Riemann Equationsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13081246-
dc.identifier.isiWOS:001475286400001-
dc.relation.journalvolume13en_US
dc.relation.journalissue8en_US
dc.identifier.eissn2227-7390-
item.fulltextno fulltext-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:海洋中心
顯示文件簡單紀錄

Page view(s)

37
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋