Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25872
DC FieldValueLanguage
dc.contributor.authorAzizi, S. Pourmohammaden_US
dc.contributor.authorLu, Hoang-Yangen_US
dc.contributor.authorCheng, Shyi-Chyien_US
dc.date.accessioned2025-06-07T06:59:17Z-
dc.date.available2025-06-07T06:59:17Z-
dc.date.issued2025-05-01-
dc.identifier.issn2162-2337-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25872-
dc.description.abstractReconfigurable intelligent surface (RIS)-assisted massive multiple-input multiple-output (MIMO) is a potential technology for providing high-quality service in future communication systems. To further enhance system performance, in this letter, we propose a novel deep learning (DL) -based symbol detector, namely the DL-based first-and-second momentum detector (DFSM-Det). Specially, in each network layer, DFSM-Det utilizes the outputs from multiple previous layers to incorporate the mechanisms based on the double momentum to progressively refine symbol estimation layer by layer. Simulation results show that DFSM-Det achieves remarkably better performance than the existing DL-based detection schemes, particularly in highly loaded scenarios.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE WIRELESS COMMUNICATIONS LETTERSen_US
dc.subjectSymbolsen_US
dc.subjectMassive MIMOen_US
dc.subjectComplexity theoryen_US
dc.subjectConvergenceen_US
dc.subjectVectorsen_US
dc.subjectReflectionen_US
dc.subjectDeep learningen_US
dc.subjectChannel estimationen_US
dc.subjectTrainingen_US
dc.subjectReconfigurable intelligent surfacesen_US
dc.subjectReconfigurable intelligent surfaceen_US
dc.subjectmassive multiple-input multiple-outputen_US
dc.subjectdeeen_US
dc.titleIntelligent Detection for RIS-Assisted MIMO Systems: A First-and-Second Momentum Approachen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/LWC.2025.3542412-
dc.identifier.isiWOS:001484670400047-
dc.relation.journalvolume14en_US
dc.relation.journalissue5en_US
dc.relation.pages1356-1360en_US
dc.identifier.eissn2162-2345-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
電機工程學系
Show simple item record

Page view(s)

20
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback