Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25885
標題: Employing Federated Semi-supervised Learning for Network Traffic Classification
作者: Lin, Chih-Yu 
Tseng, Chien-Ting
An, Li-Yu
關鍵字: Federated learning;Network management;Semi-supervised learning;Software-defined networking;Traffic classification
公開日期: 1-七月-2025
出版社: SPRINGER
卷: 33
期: 3
來源出版物: JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT
摘要: 
Network traffic classification is a critical aspect of network management. Software-defined networking (SDN) technology offers a novel approach to network management by separating the control plane from the data plane, enabling controllers to programmatically and efficiently configure the network and enhance its performance. This paper proposes improving network performance through traffic classification in the context of an SDN environment. However, implementing this idea involves several design options for the architecture and classification methods, each presenting unique challenges. For example, the classification module can be deployed on either the controller or the switch. When implemented on the switch, issues related to data labeling arise. In contrast, implementing the module on the controller may restrict traffic feature extraction to single packets. The main contribution of this paper lies in exploring the feasibility of different design options. To this end, this paper proposes a federated semi-supervised traffic classification method. Notably, in this federated semi-supervised learning framework, traffic feature extraction methods and classification models are interchangeable, allowing for substitutions based on specific application scenarios and design requirements. Consequently, the paper compares the performance of network traffic classification in (1) traffic feature extraction methods, (2) traffic classification algorithms, (3) centralized vs. federated learning, and (4) federated supervised vs. federated semi-supervised learning. Finally, while the motivation for this study arises from the context of SDN, the proposed federated semi-supervised traffic classification method is adaptable and applicable to a variety of use cases.
URI: http://scholars.ntou.edu.tw/handle/123456789/25885
ISSN: 1064-7570
DOI: 10.1007/s10922-025-09930-3
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

19
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋