Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25887
標題: Deep-SOR detection for massive MIMO systems
作者: Lu, Hoang-Yang 
Azizi, S. Pourmohammad 
Cheng, Shyi-Chyi 
關鍵字: Massive multiple-input multiple-output;Deep learning;Successive over-relaxation
公開日期: 1-七月-2025
出版社: ELSEVIER GMBH
卷: 197
來源出版物: AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS
摘要: 
In massive MIMO systems, particularly in highly loaded scenarios where the number of transmit antennas approaches that of receive antennas, symbol detection faces significant challenges, including increased computational complexity and degraded performance. To address these issues, in the paper we propose a deep learning (DL)-assisted successive over-relaxation (SOR) detector. This detector utilizes two relaxation vectors to enhance performance, which are determined through DL training. Additionally, we introduce a convergence theorem and conduct simulations to validate their determination. Finally, simulation and complexity analysis results demonstrate that the proposed detector achieves superior performance with a moderate computational cost, especially in highly loaded scenarios.
URI: http://scholars.ntou.edu.tw/handle/123456789/25887
ISSN: 1434-8411
DOI: 10.1016/j.aeue.2025.155815
顯示於:資訊工程學系
電機工程學系

顯示文件完整紀錄

Page view(s)

25
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋