Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4662
Title: Gaseous hydrogen embrittlement of PH 13-8 Mo steel
Authors: Y.S. Ding
L.W. Tsay 
M.F. Chiang
C. Chen
Issue Date: 15-Apr-2009
Journal Volume: 385
Journal Issue: 3
Start page/Pages: 538-544
Source: Journal of Nuclear Materials
Abstract: 
In this study, notched tensile and fatigue crack growth tests in gaseous hydrogen were performed on PH 13-8 Mo stainless steel specimens at room temperature. These specimens were susceptible to hydrogen embrittlement (HE), but at different degrees, depending on the aging conditions or the microstructures of the alloys. In hydrogen, the accelerated fatigue crack growth rate (FCGR) usually accompanied a reduced notched tensile strength (NTS) of the specimens, i.e., the faster the FCGR the lower the NTS. It was proposed that the same fracture mechanism could be applied to these two different types of specimens, regardless of the loading conditions. Rapid fatigue crack growth and high NTS loss were found in the H800 (426 °C under-aged) and H900 (482 °C peak-aged) specimens. The HE susceptibility of the steel was reduced by increasing the aging temperature above 593 °C, which was attributed to the increased amount of austenite in the structure. Extensive quasi-cleavage fracture was observed for the specimens that were deteriorated severely by HE.
URI: http://scholars.ntou.edu.tw/handle/123456789/4662
ISSN: 0022-3115
DOI: 10.1016/j.jnucmat.2008.12.048
Appears in Collections:光電與材料科技學系

Show full item record

WEB OF SCIENCETM
Citations

26
Last Week
0
Last month
1
checked on May 7, 2023

Page view(s)

134
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback