Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 光電與材料科技學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/4682
DC 欄位值語言
dc.contributor.authorR.K.Shiueen_US
dc.contributor.authorL.W. Tsayen_US
dc.contributor.authorC.L. Linen_US
dc.contributor.authorJ.L. Ouen_US
dc.date.accessioned2020-11-19T02:23:42Z-
dc.date.available2020-11-19T02:23:42Z-
dc.date.issued2003-03-
dc.identifier.issn0026-2714-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4682-
dc.description.abstractSince both Ag and In are important melting point depressants in Sn–Zn based solders, a series Sn–Zn based solders with various amounts of Ag and In additions was studied in the experiment. The melting behavior of solder alloys, wetting characteristics, coefficients of thermal expansion, microstructural evolution and long-term reliability of the selected Sn–Zn based solder on Au/Ni–P metallized copper substrate were examined. Based on the experimental result, there is little change in the melting range of Sn–Zn based solder alloys by minor addition of Ag. On the contrary, the melting point of Sn–Zn based alloys can be effectively decreased by In additions. However, the difference between solidus and liquidus temperature is broadened as the increment of In into Sn–Zn based solders. 76Sn–9Zn–15In has the lowest liquidus temperature among all alloys, and it can effectively bond the Au/Ni–P metallized copper substrate. The microstructure of 76Sn–9Zn–15In alloy soldered at 200 °C for 20 min is primarily comprised of Sn–In γ phase and needle-like ZnO2. Since there is no flux usage during soldering, zinc oxide cannot be avoided even the process performed under 2×10−2 mbar vacuum environment. It is also noted that there is no interfacial reaction layer between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate after soldering. However, there is a reaction layer between 76Sn–9Zn–15In and substrate as the soldered specimen aged at 90 °C for 168 h. Its chemical composition is close to Zn-rich γ phase (NiZn3) alloyed with minor Sn, In, Cu and P. For the specimen further aged at 90 °C for 336 h, there are cracks along the interface between solder alloy and electroless Ni–P layer. The oxidation of the interfacial Zn-rich γ phase plays an important role in deterioration of the bonding between 76Sn–9Zn–15In and Au/Ni–P metallized copper substrate.en_US
dc.language.isoenen_US
dc.relation.ispartofMicroelectronics Reliabilityen_US
dc.titleThe reliability study of selected Sn-Zn based lead-free solders on Au Ni-P Cu substrateen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/s0026-2714(02)00259-7-
dc.identifier.isiWOS:000181730900016-
dc.relation.journalvolume43en_US
dc.relation.journalissue3en_US
dc.relation.pages453-463en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Optoelectronics and Materials Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.orcid0000-0003-1644-9745-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:光電與材料科技學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

36
上周
1
上個月
0
checked on 2022/1/12

Page view(s)

93
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋