Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4851
Title: Complementary Kalman Filter as a Baseline Vector Estimator for GPS-Based Attitude Determination
Authors: Dah-Jing Jwo 
Keywords: Global positioning system (GPS);attitude determination;complementary Kalman filter;baseline vector
Issue Date: 20-Aug-2020
Publisher: Tech Science Press
Journal Volume: 65
Journal Issue: 2
Start page/Pages: 993-1014
Source: Cmc-Computers Materials & Continua
Abstract: 
The Global Positioning System (GPS) offers the interferometer for attitude determination by processing the carrier phase observables. By using carrier phase observables, the relative positioning is obtained in centimeter level. GPS interferometry has been firstly used in precise static relative positioning, and thereafter in kinematic positioning. The carrier phase differential GPS based on interferometer principles can solve for the antenna baseline vector, defined as the vector between the antenna designated master and one of the slave antennas, connected to a rigid body. Determining the unknown baseline vectors between the antennas sits at the heart of GPS-based attitude determination. The conventional solution of the baseline vectors based on least-squares approach is inherently noisy, which results in the noisy attitude solutions. In this article, the complementary Kalman filter (CKF) is employed for solving the baseline vector in the attitude determination mechanism to improve the performance, where the receiversatellite double differenced observable was utilized as the measurement. By using the carrier phase observables, the relative positioning is obtained in centimeter level. Employing the CKF provides several advantages, such as accuracy improvement, reliability enhancement, and real-time assurance. Simulation results based on the conventional method where the least-squares approach is involved, and the proposed method where the CKF is involved are compared and discussed.
URI: http://scholars.ntou.edu.tw/handle/123456789/4851
ISSN: 1546-2218
DOI: ://WOS:000564151800001
://WOS:000564151800001
10.32604/cmc.2020.011592
://WOS:000564151800001
://WOS:000564151800001
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

206
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback