Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4861
DC FieldValueLanguage
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorHu, C. W.en_US
dc.contributor.authorTseng, C. H.en_US
dc.date.accessioned2020-11-19T03:03:41Z-
dc.date.available2020-11-19T03:03:41Z-
dc.date.issued2013-05-
dc.identifier.issn1729-8814-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4861-
dc.description.abstractAbstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS) and an inertial navigation system (INS), using nonlinear filtering approaches with an interacting multiple model (IMM) algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF), which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF). Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.en_US
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.relation.ispartofInternational Journal of Advanced Robotic Systemsen_US
dc.subjectGPSen_US
dc.subjectINSen_US
dc.subjectUltra-Tight Integrationen_US
dc.subjectInteracting Multiple Modelen_US
dc.subjectUnscented Kalman Filteren_US
dc.titleNonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integrationen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000318474000003-
dc.identifier.doi<Go to ISI>://WOS:000318474000003-
dc.identifier.doi10.5772/56320-
dc.identifier.doi<Go to ISI>://WOS:000318474000003-
dc.identifier.doi<Go to ISI>://WOS:000318474000003-
dc.identifier.url<Go to ISI>://WOS:000318474000003
dc.relation.journalvolume10en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

155
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback