Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4862
DC FieldValueLanguage
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorHuang, H. C.en_US
dc.date.accessioned2020-11-19T03:03:41Z-
dc.date.available2020-11-19T03:03:41Z-
dc.date.issued2004-09-
dc.identifier.issn0373-4633-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4862-
dc.description.abstractThe extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofThe Journal of Navigationen_US
dc.subjectGPSen_US
dc.subjectExtended Kalman filteren_US
dc.subjectAdaptiveen_US
dc.subjectNeural networken_US
dc.titleNeural network aided adaptive extended Kalman filtering approach for DGPS positioningen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000224185200011-
dc.identifier.doi<Go to ISI>://WOS:000224185200011-
dc.identifier.doi10.1017/s0373463304002814-
dc.identifier.doi<Go to ISI>://WOS:000224185200011-
dc.identifier.doi<Go to ISI>://WOS:000224185200011-
dc.identifier.url<Go to ISI>://WOS:000224185200011
dc.relation.journalvolume57en_US
dc.relation.journalissue3en_US
dc.relation.pages449 - 463en_US
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

253
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback