Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4866
DC FieldValueLanguage
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorLai, S. Y.en_US
dc.date.accessioned2020-11-19T03:03:42Z-
dc.date.available2020-11-19T03:03:42Z-
dc.date.issued2009-04-
dc.identifier.issn0373-4633-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4866-
dc.description.abstractA navigation integration processing scheme, called the strong tracking unscented Kalman filter (STUKF), is based on the combination of an unscented Kalman filter (UKF) and a strong tracking filter (STF). The UKF employs a set of sigma points by deterministic sampling, such that the linearization process is not necessary, and therefore the error caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. As a type of adaptive filter, the STF is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. In order to resolve the shortcoming in traditional approach for selecting the softening factor through personal experience or computer simulation, a novel scheme called the fuzzy strong tracking unscented Kalman filter (FSTUKF) is presented where the Fuzzy Logic Adaptive System (FLAS) is incorporated for determining the softening factor. The proposed FSTUKF algorithm shows promising results in estimation accuracy when applied to the integrated navigation system design, as compared to the EKF, UKF and STUKF approaches.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofThe Journal of Navigationen_US
dc.subjectIntegrated navigationen_US
dc.subjectUnscented Kalman filteren_US
dc.subjectStrong tracking filteren_US
dc.subjectFuzzy logicen_US
dc.titleNavigation Integration Using the Fuzzy Strong Tracking Unscented Kalman Filteren_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000265036500008-
dc.identifier.doi<Go to ISI>://WOS:000265036500008-
dc.identifier.doi10.1017/s037346330800516x-
dc.identifier.doi<Go to ISI>://WOS:000265036500008-
dc.identifier.doi<Go to ISI>://WOS:000265036500008-
dc.identifier.url<Go to ISI>://WOS:000265036500008
dc.relation.journalvolume62en_US
dc.relation.journalissue2en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

157
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback