Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/4870
DC 欄位值語言
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorTseng, C. H.en_US
dc.contributor.authorLiu, J. C.en_US
dc.contributor.authorLee, H. D.en_US
dc.date.accessioned2020-11-19T03:03:43Z-
dc.date.available2020-11-19T03:03:43Z-
dc.date.issued2011-08-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4870-
dc.description.abstractAccurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular. The unscented Kalman filter (UKF), which uses a deterministic sampling approach to capture the mean and covariance estimates with a minimal set of sample points, is able to achieve at least the second order accuracy without Jacobians’ computation involved. In this paper, the UKF is applied to the rigid body motion and shape dynamics to estimate feature points on moving objects. The performance evaluation is carried out through the numerical study. The results show that UKF demonstrates substantial improvement in accuracy estimation for implementing the estimation of motion and planar surface parameters of a single camera.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.subjectmotionen_US
dc.subjectshapeen_US
dc.subjectoptical flowen_US
dc.subjectunscented Kalman filteren_US
dc.titleUnscented Kalman Filtering for Single Camera Based Motion and Shape Estimationen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi10.3390/s110807437-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.url<Go to ISI>://WOS:000294253900009
dc.relation.journalvolume11en_US
dc.relation.journalissue8en_US
dc.relation.pages7437-7454en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

169
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋