Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4870
DC FieldValueLanguage
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorTseng, C. H.en_US
dc.contributor.authorLiu, J. C.en_US
dc.contributor.authorLee, H. D.en_US
dc.date.accessioned2020-11-19T03:03:43Z-
dc.date.available2020-11-19T03:03:43Z-
dc.date.issued2011-08-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4870-
dc.description.abstractAccurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular. The unscented Kalman filter (UKF), which uses a deterministic sampling approach to capture the mean and covariance estimates with a minimal set of sample points, is able to achieve at least the second order accuracy without Jacobians’ computation involved. In this paper, the UKF is applied to the rigid body motion and shape dynamics to estimate feature points on moving objects. The performance evaluation is carried out through the numerical study. The results show that UKF demonstrates substantial improvement in accuracy estimation for implementing the estimation of motion and planar surface parameters of a single camera.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.subjectmotionen_US
dc.subjectshapeen_US
dc.subjectoptical flowen_US
dc.subjectunscented Kalman filteren_US
dc.titleUnscented Kalman Filtering for Single Camera Based Motion and Shape Estimationen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi10.3390/s110807437-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.doi<Go to ISI>://WOS:000294253900009-
dc.identifier.url<Go to ISI>://WOS:000294253900009
dc.relation.journalvolume11en_US
dc.relation.journalissue8en_US
dc.relation.pages7437-7454en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

169
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback