Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/4871
DC 欄位值語言
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorWang, S. H.en_US
dc.date.accessioned2020-11-19T03:03:43Z-
dc.date.available2020-11-19T03:03:43Z-
dc.date.issued2007-05-
dc.identifier.issn1530-437X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4871-
dc.description.abstractThe well-known extended Kalman filter (EKF) has been widely applied to the Global Positioning System (GPS) navigation processing. The adaptive algorithm has been one of the approaches to prevent the divergence problem of the EKF when precise knowledge on the system models are not available. One of the adaptive methods is called the strong tracking Kalman filter (STKF), which is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. Traditional approach for selecting the softening factors heavily relies on personal experience or computer simulation. In order to resolve this shortcoming, a novel scheme called the adaptive fuzzy strong tracking Kalman filter (AFSTKF) is carried out. In the AFSTKF, the fuzzy logic reasoning system based on the Takagi-Sugeno (T-S) model is incorporated into the STKF. By monitoring the degree of divergence (DOD) parameters based on the innovation information, the fuzzy logic adaptive system (FLAS) is designed for dynamically adjusting the softening factor according to the change in vehicle dynamics. GPS navigation processing using the AFSTKF will be simulated to validate the effectiveness of the proposed strategy. The performance of the proposed scheme will be assessed and compared with those of conventional EKF and STKFen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIeee Sensors Journalen_US
dc.subjectAdaptive extended Kalman filteringen_US
dc.subjectfuzzy logic adaptive system (FLAS)en_US
dc.subjectglobal positioning system (GPS)en_US
dc.subjectstrong tracking Kalman filter (STKF)en_US
dc.titleAdaptive fuzzy strong tracking extended kalman filtering for GPS navigationen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi10.1109/jsen.2007.894148-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.url<Go to ISI>://WOS:000246780600022
dc.relation.journalvolume7en_US
dc.relation.journalissue5-6en_US
dc.relation.pages778 - 789en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

321
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋