Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4871
DC FieldValueLanguage
dc.contributor.authorDah-Jing Jwoen_US
dc.contributor.authorWang, S. H.en_US
dc.date.accessioned2020-11-19T03:03:43Z-
dc.date.available2020-11-19T03:03:43Z-
dc.date.issued2007-05-
dc.identifier.issn1530-437X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4871-
dc.description.abstractThe well-known extended Kalman filter (EKF) has been widely applied to the Global Positioning System (GPS) navigation processing. The adaptive algorithm has been one of the approaches to prevent the divergence problem of the EKF when precise knowledge on the system models are not available. One of the adaptive methods is called the strong tracking Kalman filter (STKF), which is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. Traditional approach for selecting the softening factors heavily relies on personal experience or computer simulation. In order to resolve this shortcoming, a novel scheme called the adaptive fuzzy strong tracking Kalman filter (AFSTKF) is carried out. In the AFSTKF, the fuzzy logic reasoning system based on the Takagi-Sugeno (T-S) model is incorporated into the STKF. By monitoring the degree of divergence (DOD) parameters based on the innovation information, the fuzzy logic adaptive system (FLAS) is designed for dynamically adjusting the softening factor according to the change in vehicle dynamics. GPS navigation processing using the AFSTKF will be simulated to validate the effectiveness of the proposed strategy. The performance of the proposed scheme will be assessed and compared with those of conventional EKF and STKFen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIeee Sensors Journalen_US
dc.subjectAdaptive extended Kalman filteringen_US
dc.subjectfuzzy logic adaptive system (FLAS)en_US
dc.subjectglobal positioning system (GPS)en_US
dc.subjectstrong tracking Kalman filter (STKF)en_US
dc.titleAdaptive fuzzy strong tracking extended kalman filtering for GPS navigationen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi10.1109/jsen.2007.894148-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.doi<Go to ISI>://WOS:000246780600022-
dc.identifier.url<Go to ISI>://WOS:000246780600022
dc.relation.journalvolume7en_US
dc.relation.journalissue5-6en_US
dc.relation.pages778 - 789en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

321
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback