Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4878
DC FieldValueLanguage
dc.contributor.authorTseng, C. H.en_US
dc.contributor.authorLin, S. F.en_US
dc.contributor.authorDah-Jing Jwoen_US
dc.date.accessioned2020-11-19T03:03:44Z-
dc.date.available2020-11-19T03:03:44Z-
dc.date.issued2016-08-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4878-
dc.description.abstractThis paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.subjectintegrated navigationen_US
dc.subjectcubature Kalman filteren_US
dc.subjectunscented Kalman filteren_US
dc.subjectfuzzy logicen_US
dc.titleFuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systemsen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000382323200155-
dc.identifier.doi<Go to ISI>://WOS:000382323200155-
dc.identifier.doi10.3390/s16081167-
dc.identifier.doi<Go to ISI>://WOS:000382323200155-
dc.identifier.doi<Go to ISI>://WOS:000382323200155-
dc.identifier.url<Go to ISI>://WOS:000382323200155
dc.relation.journalvolume16en_US
dc.relation.journalissue8en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

169
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback