Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4879
DC FieldValueLanguage
dc.contributor.authorTseng, C. H.en_US
dc.contributor.authorLin, S. F.en_US
dc.contributor.authorDah-Jing Jwoen_US
dc.date.accessioned2020-11-19T03:03:44Z-
dc.date.available2020-11-19T03:03:44Z-
dc.date.issued2017-05-
dc.identifier.issn0373-4633-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4879-
dc.description.abstractA robust state estimation technique based on the Huber-based Cubature Kalman Filter (HCKF) is proposed for Global Positioning System (GPS) navigation processing. The Cubature Kalman Filter (CKF) employs a third-degree spherical-radial cubature rule to compute the Gaussian weighted integration, such that the numerical instability induced by round-off errors can be avoided. In GPS navigation, the filter-based estimation of the position and velocity states can be severely degraded due to contaminated measurements caused by outliers or deviation from a Gaussian distribution assumption. For the signals contaminated with non-Gaussian noise or outliers, a robust scheme combining the Huber M-estimation methodology and the CKF framework is beneficial where the Huber M-estimation methodology is used to reformulate the measurement information of the CKF. GPS navigation processing using the HCKF algorithm has been carried out and the performance has been compared to those based on the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and CKF approaches. Simulation and experimental results presented in this paper confirm the effectiveness of the method.en_US
dc.language.isoenen_US
dc.publisherThe Royal Institute of Navigation 2016en_US
dc.relation.ispartofJournal of Navigationen_US
dc.subjectGPS navigationen_US
dc.subjectUnscented Kalman filteren_US
dc.subjectCubature Kalman filteren_US
dc.subjectHuber M-estimationen_US
dc.titleRobust Huber-Based Cubature Kalman Filter for GPS Navigation Processingen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000399413100005-
dc.identifier.doi<Go to ISI>://WOS:000399413100005-
dc.identifier.doi10.1017/s0373463316000692-
dc.identifier.doi<Go to ISI>://WOS:000399413100005-
dc.identifier.doi<Go to ISI>://WOS:000399413100005-
dc.identifier.url<Go to ISI>://WOS:000399413100005
dc.relation.journalvolume70en_US
dc.relation.journalissue3en_US
dc.relation.pages527 - 546en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:通訊與導航工程學系
Show simple item record

Page view(s)

166
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback