Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/4994
Title: Recurrent Network and Recursive Estimation Methods for State Space Modeling
Authors: Jih-Gau Juang 
Lin, Bo-Shian
Chien, Li-Hsiang
Keywords: Parameters estimation;Hybrid intelligent methods;Recurrent neural network;Recursive least-squares;Genetic algorithm
Issue Date: Jan-2012
Journal Volume: 15
Journal Issue: 1
Start page/Pages: 413-425.
Source: Information-an International Interdisciplinary Journal
Abstract: 
State space mpdeling for npnlinear and time-varying systems using hybrid intelligent methods is presnted A recurrent neural network and several recursive parameter estimation methods are utilized in this study.Convergence property of the recurrent network is first evaluated.Then the proposed method is implemented to identify a nonlinear system.Recursive least-sqursive least-squares with exponential forgetting, stochastic approximation,and projection algorithm are also given for comparison. Hybrid parameter estimation combined with evolutionary computation is then proposed . Simulation results show that the proposed schemes have better performance on system modeling then the conventional least-squares estimation and the recurrent neural network.
URI: http://scholars.ntou.edu.tw/handle/123456789/4994
ISSN: 1343-4500
DOI: ://WOS:000301809700044
://WOS:000301809700044
://WOS:000301809700044
://WOS:000301809700044
://WOS:000301809700044
://WOS:000301809700044
Appears in Collections:通訊與導航工程學系

Show full item record

Page view(s)

153
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback