Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/5746
DC FieldValueLanguage
dc.contributor.authorYi-Zeng Hsiehen_US
dc.contributor.authorShih-Syun Linen_US
dc.date.accessioned2020-11-19T10:55:14Z-
dc.date.available2020-11-19T10:55:14Z-
dc.date.issued2020-09-
dc.identifier.issn1530-437X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/5746-
dc.description.abstractThis study presents a stereo vision robotic arm assistance system, in which five degrees of catching can be performed by the robot arm in a single instance. The algorithm of the control system is built for population-based optimization and specifically aimed to assist people with disabilities. The proposed stereo vision-based robot arm system enables users to manipulate objects based on the robot's ability to aim at objects by using computer vision. The stereo vision system counts the parameters by focusing on the real-world position of the instance in the coordinate system. A trained deep fully connected network is then adopted to compensate the location measurement errors incurred by the inaccurate parameters measured from the deep learning procedure. Subsequently, the proposed Q-learning-based swarm optimization algorithm is adopted to solve the forward kinematics problem and count the angles of each servo. The performance of the robot arm is compared with several real-life experiments to test its ability to grip a target object in different positions.en_US
dc.language.isoenen_US
dc.relation.ispartofIeee Sensors Journalen_US
dc.subjectManipulatorsen_US
dc.subjectCamerasen_US
dc.subjectRobot vision systemsen_US
dc.subjectService robotsen_US
dc.subjectStereo visionen_US
dc.titleRobotic Arm Assistance System Based on Simple Stereo Matching and Q-Learning Optimizationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/jsen.2020.2993314-
dc.identifier.isiWOS:000575389000064-
dc.relation.journalvolume20en_US
dc.relation.journalissue18en_US
dc.relation.pages10945 - 10954en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-5758-4516-
crisitem.author.orcid0000-0002-8360-5819-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

157
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback