Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/6025
DC FieldValueLanguage
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorShen-Huan Chouen_US
dc.date.accessioned2020-11-19T11:56:33Z-
dc.date.available2020-11-19T11:56:33Z-
dc.date.issued2015-12-
dc.identifier.issn0031-3203-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/6025-
dc.description.abstractThe hyperparameters for support vector machines (SVMs) with L2 soft margins and the radial basis function (RBF) kernel include the parameters for the RBF kernel and the L2-soft-margin parameter C. In this paper, the parameters for the RBF kernel are determined through maximization of a margin-based criterion. This criterion is approximately optimized through solving two easier subproblems: one is related to margin maximization in the input space and the other is related to the determination of the extent of sample spread in the feature space. After that, the L2-soft-margin parameter C is obtained by an analytic formula in terms of a jackknife estimate of the perturbation in the eigenvalues of the kernel matrix. In comparison with SVM model selection based on differentiable bounds, such as radius/margin bounds, experimental results on a number of open data sets show that the proposed approach is efficient and accurate.en_US
dc.language.isoenen_US
dc.relation.ispartofPattern Recognitionen_US
dc.subjectRBF kernelsen_US
dc.subjectL2-loss support vector machinesen_US
dc.subjectThe jackknife methoden_US
dc.subjectMaximum-margin principlesen_US
dc.titleTuning of the hyperparameters for L2-loss SVMs with the RBF kernel by the maximum-margin principle and the jackknife techniqueen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.patcog.2015.06.017-
dc.identifier.isiWOS:000360952800014-
dc.relation.journalvolume48en_US
dc.relation.journalissue12en_US
dc.relation.pages3983-3992en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

13
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

330
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback