Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/6027
標題: Automatic Tuning of the RBF Kernel Parameter for Batch-Mode Active Learning Algorithms: A Scalable Framework
作者: Chin-Chun Chang 
Hsin-Ta Huang
關鍵字: Kernel;Tuning;Training;Labeling;Machine learning algorithms;Clustering algorithms;Cybernetics
公開日期: 十二月-2019
卷: 49
期: 12
起(迄)頁: 4460 - 4472
來源出版物: Ieee Transactions on Cybernetics
摘要: 
Batch-mode active learning algorithms can select a batch of valuable unlabeled samples to manually annotate for reducing the total cost of labeling every unlabeled sample. To facilitate selection of valuable unlabeled samples, many batchmode active learning algorithms map samples to the reproducing kernel Hilbert space induced by a radial-basis function (RBF) kernel. Setting a proper value to the parameter for the RBF kernel is crucial for such batch-mode active learning algorithms. In this paper, for automatic tuning of the kernel parameter, a hypothesis-margin-based criterion function is proposed. Three frameworks are also developed to incorporate the function of automatic tuning of the kernel parameter with existing batchmodel active learning algorithms. In the proposed frameworks, the kernel parameter can be tuned in a single stage or in multiple stages. Tuning the kernel parameter in a single stage aims for the kernel parameter to be suitable for selecting the specified number of unlabeled samples. When the kernel parameter is tuned in multiple stages, the incorporated active learning algorithm can be enforced to make coarse-to-fine evaluations of the importance of unlabeled samples. The proposed framework can also improve the scalability of existing batch-mode active learning algorithms satisfying a decomposition property. Experimental results on data sets comprising hundreds to hundreds of thousands of samples have shown the feasibility of the proposed framework.
URI: http://scholars.ntou.edu.tw/handle/123456789/6027
ISSN: 2168-2267
DOI: 10.1109/tcyb.2018.2869861
顯示於:資訊工程學系

顯示文件完整紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋