Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/6027
DC FieldValueLanguage
dc.contributor.authorChin-Chun Changen_US
dc.contributor.authorHsin-Ta Huangen_US
dc.date.accessioned2020-11-19T11:56:33Z-
dc.date.available2020-11-19T11:56:33Z-
dc.date.issued2019-12-
dc.identifier.issn2168-2267-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/6027-
dc.description.abstractBatch-mode active learning algorithms can select a batch of valuable unlabeled samples to manually annotate for reducing the total cost of labeling every unlabeled sample. To facilitate selection of valuable unlabeled samples, many batchmode active learning algorithms map samples to the reproducing kernel Hilbert space induced by a radial-basis function (RBF) kernel. Setting a proper value to the parameter for the RBF kernel is crucial for such batch-mode active learning algorithms. In this paper, for automatic tuning of the kernel parameter, a hypothesis-margin-based criterion function is proposed. Three frameworks are also developed to incorporate the function of automatic tuning of the kernel parameter with existing batchmodel active learning algorithms. In the proposed frameworks, the kernel parameter can be tuned in a single stage or in multiple stages. Tuning the kernel parameter in a single stage aims for the kernel parameter to be suitable for selecting the specified number of unlabeled samples. When the kernel parameter is tuned in multiple stages, the incorporated active learning algorithm can be enforced to make coarse-to-fine evaluations of the importance of unlabeled samples. The proposed framework can also improve the scalability of existing batch-mode active learning algorithms satisfying a decomposition property. Experimental results on data sets comprising hundreds to hundreds of thousands of samples have shown the feasibility of the proposed framework.en_US
dc.language.isoenen_US
dc.relation.ispartofIeee Transactions on Cyberneticsen_US
dc.subjectKernelen_US
dc.subjectTuningen_US
dc.subjectTrainingen_US
dc.subjectLabelingen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectClustering algorithmsen_US
dc.subjectCyberneticsen_US
dc.titleAutomatic Tuning of the RBF Kernel Parameter for Batch-Mode Active Learning Algorithms: A Scalable Frameworken_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/tcyb.2018.2869861-
dc.identifier.isiWOS:000485687200035-
dc.relation.journalvolume49en_US
dc.relation.journalissue12en_US
dc.relation.pages4460 - 4472en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

162
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback